繁體中文
琪派听译培训网为客户提供专业的听译培训服务,还提供各类文档,视频的翻译服务

[HOUDINI大课堂V1] FXPHD | HOU203 Water Effects(Houdini水特效制作教学 中文字幕 翻译示范)中英文翻译服务

类别 //
名称 [HOUDINI大课堂V1] FXPHD | HOU203 Water Effects(Houdini水特效制作教学 中文字幕 翻译示范)
编号 ZM-185
字幕制作中
时间
.  
 
    
内容介绍
 

本教学时间长达11个多小时,本作品由琪派听译培训网(www.gbstuff.com)提供翻译示范,加入琪派听说译一对一培训课程,独立听懂原版英文视频

 
教师介绍


Jonathan Gilbert教授是一个自由特效艺术家,他使用HOUDINI已经有6年时间,他毕业于旧金山艺术大学,是3D动画与视觉特效专业的硕士研究生,主要研究方向是流体动力学。接着他就职于SIDE EFFECTS,制作与教授了一系列的基础与中级烟火特效课程。他最近参与制作了哈利波特,还有死亡圣器 2,担任技术总监。

Professor Jonathan Gilbert is a freelance VFX artist with over six years of Houdini experience. He graduated with his MFA in 3D Animation and Visual Effects with a concentration in fluid dynamics from the Academy of Art University in San Francisco. He then worked at Side Effects Software Inc. building and teaching a series of basic and intermediate Pyro Effects classes in Santa Monica. His experience includes work at Asylum on the Black Eyed Peas Dirty Bit music video and more recently, on the last Harry Potter and the Deathly Hallows Part 2 as a Technical Director at Gradient Effects.

 
其他介绍信息
 

在这个中级教学中,我们将学习HOUDINI的水特效制作,Jonathan Gilbert与John Moncrief将帮助会员们对HOUDINI的DOPS还有各种不同的流体类型,例如SPN,VOXEL-BASED,还有FLIP FLIUDS进行讲解,使用这些知识,我们将能够产品级的作品中将CG水特效集成到真实的背景中。我们将为大家讲解如何在HOUDINI的使用RBD来实 现碰撞检测,使用FLIP FLIUID来制作广袤的水体,使用DOPS来制作风,泡沫,还会讲解到照明,材质,渲染与最终图片的合成

Gilbert是一位自由特效艺术家,使用HOUDINI已经有6年时间,他毕业于旧金山艺术大学3D动画特效艺术专业,并获得美术硕士的学位。接 着他就开始在Side Effects工作,在Santa Monica教授了一系列初级与中级的PYRO EFFECTS特效教学。JONATHAN刚完成了<<哈利·波特与死亡圣器2>>中的技术总监工作。他现在还是旧金山大学的教 授,教授HOUDINI的高级课程。

Moncrief从10年前就开始从事特效制作工作,使用Houdini, Maya, 3ds Max, After Effects, Shake, Nuke都有多年的经验,John刚结束了在Side Effects Software Inc 6个月的工作,他在Santa Monica创建了一个HOUDINI培训课程,为行业专业人士教授FLIP FLUID,Dops,vops。客户包括了暴雪,索尼娱乐,梦工厂。


This intermediate level course discusses fluid effects in Houdini. Profs Jonathan Gilbert and John Moncrief will help members of the course become familiar with Houdini’s Dynamics Operators (DOPs) and the different fluid types: SPH, Voxel-Based and FLIP fluids. With this knowledge you will endeavor in a production oriented project to integrate a cg water fountain into a live action background plate. We will explore Houdini’s Rigid Body Dynamics (RBD) for collision detection, FLIP fluids for the bulk of the water effects, DOPs Forces for wind, foam and spray using some built in shelf tools (whitecaps) and lastly, lighting, shading, rendering and compositing the final image.

Gilbert is a freelance VFX artist with over six years of Houdini experience. He graduated with his MFA in 3D Animation and Visual Effects with a concentration in fluid dynamics from the Academy of Art University in San Francisco. He then worked at Side Effects Software Inc. building and teaching a series of basic and intermediate Pyro Effects classes in Santa Monica. More recently, Jonathan finished working on the last Harry Potter and the Deathly Hallows Part 2 as a Technical Director at Gradient Effects. He also is currently a Professor at the Academy of Art University in San Francisco, building and teaching Advanced Houdini.

Moncrief started working in VFX over ten years ago and has experience in Houdini, Maya, 3ds Max, After Effects, Shake, and just about every NLE you can think of. John just wrapped up 6 months working at Side Effects Software Inc. in Santa Monica where he created a library of Houdini training courses on FLIP fluids, DOPs and VOPs for industry professionals from various studios including Blizzard, Sony Entertainment and DreamWorks. He has one insane long-haired cat, horrible allergies, and is currently pursuing a Masters of Fine Art degree in Visual Effects at Savannah College of Art and Design in Atlanta.


Class 1: This class is mainly theory and lecture. It lays down the foundation for understanding the more advanced properties of fluid simulations. In this class we discuss the three types of fluid simulations available in Houdini, Voxel Based, SPH (particle), and FLIP. There is a complete breakdown of all three simulation methods including example scenes.

Class 2: In class 2 of the hou203 course, you will build upon your fundamental theories and concepts that you learned in class 1 by learning how to set up volume, sph and FLIP fluid simulations. Also, you will explore the most common and useful parameters of each and gain some insight as to why FLIP is so powerful and the reason we'll be using it extensively in our project.

Class 3: Begin customizing the FLIP fluid simulation by first discussing different methods of emission, setting up clipping limits for efficiency and creating effective collision geometry. Discuss getting data in and out of DOPs and common work flows such as caching methods, writing out .sim data and/or .bgeos and where to find information about distributed simulation.

Class 4: Discuss some of the scene optimizations such as the .bgeo file format and only using one single piece of geometry for our fountain. Explore in detail different techniques and strategies for working with different scene scales in a fluid simulation by adjusting important parameters and using specific DOPs while analyzing the advantages and disadvantages for each of the setups. Cover methods to export .sim data and using an initial state. Quickly go over a couple simple VOP SOPs such as animated noisy volume and a velocity visualization tool.

Class 5: Explore a variety of ways to fill up our water fountain bowls by first using the particle fluid object's initial data option to turn geometry into particles as well as converting the geometry into our own set of points and using the particle field type for the initial data. Look at working inside the popsolver to source particles from our geometry, the sculpted particle fluid shelf tool to take an initial reference surface and a terrain object to create a field of particles with it's own flip solver and fluid object and the method used in the first pass of the simulation, using another particle fluid emitter to emit particles from custom geometry. Take a quick tour of the ripple solver and how it could be used to simulate the base water surface of the water fountain as an option to possibly save time by not having to simulate as many particles with flip.

Class 6: In this class we cover some basic secondary effects for our fountain simulation. We float leaves on the water surface. First we show this on the ripple surface, and then demonstrate the technique using the mesh generated by the particle fluid surface. Instead of using shelf tools, we build our on set of custom DOPs nodes in order to push the leaves around in the water using the velocity field from the FLIP solver.

Class 7: We take a closer look at secondary effects for fluid simulations. First, a review of some reference footage so that we may get a better idea of what types of secondary effects we might need. Next we cover advanced DOPs techniques and build our own solver for calculating turbulence. We look at certain SOPs solutions for creating spray on a wave based on the curvature of the surface. We also check out the performance monitor and look at ways of optimizing the fountain scene to get a faster more efficient simulation.

Class 8: Briefly talk about the new simulation and the meshing parameters used to get our fluid mesh. Cover how to set up an environment light with an HDR that has been modified in COPs. Set up an area light for nicer lighting and shadows. Discuss the Mantra ROP and some of the important parameters to look at when rendering liquids and setting up Micropolygon Physically Based Rendering. Talk about Caustics and Photon Map generation. Then set up takes to separate out individual render passes and bring them into COPs where we composite them together. Look at some quick tricks to fake some shadows and lighting changes in our composite.

Class 9: This class addresses the final touches to our fountain project. In this class we take a closer look at the individual elements of a rendered fluid simulation. We discuss how to export out custom foam attribute as a separate image plane by creating custom renderable parameters inside the basic fluid shader. After that the footage is brought into Nuke for the final composite.

Class 10: In class 10 of the fxphd hou203 course, a variety of methods for artistically controlling the motion of a fluid in Houdini is explored. These include creating custom velocity fields to use with the field force dop and gas particle to field dop, using a sop vector field with the gas calculate dop and using POPs attractors along with the ballistic attribute. With all of these different tools for controlling the motion of fluid simulations, pretty much any type of fluid effect can be achieved now.

 
Fxphd介绍
 
 
Fxphd是由专业人士建立的在线视觉特效,后期处理,产品制作教学项目。提供的课程包括了软件教学,艺术教学。包括了NUKE, FLAME, MAYA, HOUDINI, AFTER EFFECTS, FINAL CUT, 色彩等。

fxphd is an online vfx, production, post-production training program led by professionals. We offer both application and craft-based courses, online forums for feedback, and vpn software. Curriculum includes courses in applications such as Nuke, Flame, Maya, Houdini, After Effects, Final Cut, Color, and more. As owners of RED #22, we have been involved with the ground breaking camera since the very first shipments -- and built a solid foundation of on-set and post courses dealing with shooting RED.

Over the history of fxphd, we've grown to become the leading online subscription site for high-end post-production training. Over 90% of our members rate fxphd a "brilliant" or "great" value for their money -- with the same percentage rating their course professors "great" or "exceptional". We'll answer your questions as soon as we are able and if we don't get to it, it's likely one of our members will. You'll find our forums to be incredibly high level - with very little noise. And don't forget to listen to our weekly fxphDOD podcast -- you can listen to this week's episode and all past ones by visiting our fxphd podcast page.

 
其他介绍信息
 












 
 
客服QQ:1355398  客服微信(请扫右方二维码)
copyright © 2009-2022琪派听说与视频翻译能力培训网  |